Seven Techniques for Data Dimensionality Reduction Missing Values, Low Variance Filter, High Correlation Filter, PCA, Random Forests, Backward Feature Elimination, and Forward Feature Construction
نویسنده
چکیده
منابع مشابه
Applying machine learning techniques to ecological data
This thesis is about modelling carbon flux in forests based on meterological variables using modern machine learning techniques. The motivation is to better understand the carbon uptake process from trees and find the driving factors of it, using totally automated techniques. Data from two British forests were used, (Griffin and Harwood) but finally results were obtained only with Harwood becau...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملBi-level dimensionality reduction methods using feature selection and feature extraction
Variety of feature selection methods have been developed in the literature, which can be classified into three main categories: filter, wrapper and hybrid approaches. Filter methods apply an independent test without involving any learning algorithm, while wrapper methods require a predetermined learning algorithm for feature subset evaluation. Filter and wrapper methods have their drawbacks and...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کاملMulti-Objective Genetic Programming Projection Pursuit for Exploratory Data Modeling
For classification problems, feature extraction is a crucial process which aims to find a suitable data representation that increases the performance of the machine learning algorithm. According to the curse of dimensionality [4] theorem, the number of samples needed for a classification task increases exponentially as the number of dimensions (variables, features) increases. On the other hand,...
متن کامل